A Geometric Theory of Surface Area

Part III: Non-triangulable Parametric Surfaces

By

L. V. Toralballa, New York, N.Y., USA

(Received May 10, 1972)

Introduction

In Part I [1] we presented a geometric theory of the area of a non-parametric surface. In Part II [2] we considered the area of a triangulable parametric surface. To round out the basic theory we now take up the case of the non-triangulable parametric surfaces.

A parametric surface is the locus in \mathfrak{E}^3 of simultaneous equations $x=f(u,v),\ y=g(u,v),\ z=h(u,v),$ these functions being defined and continuous on \mathfrak{E} , a subset of the uv plane consisting of the interior and the boundary of a simple closed polygon. These equations constitute a continuous transformation or mapping F of \mathfrak{E} . Such a surface S is said to be triangulable at a given point $Q \in S$, if for every ball $B(Q,\varepsilon)$, there exists an admissible triangle T inscribed in $S \cap B(Q,\varepsilon)$ (i. e., the vertices of T are in $S \cap B(Q,\varepsilon)$ and one angle of T lies between a prescribed angle φ , $0 < \varphi < \pi$, and $\pi - \varphi$). S is said to be triangulable if it is triangulable at each of its points.

1. Topology

Let S be non-triangulable at $Q \in S$. There exists a ball $B(Q, \varepsilon)$ such that in $S \cap B(Q, \varepsilon)$ no admissible triangle can be inscribed. It follows that S is non-triangulable at each of the points in $S \cap B(Q, \varepsilon)$. Let D denote the set of the points of S at which S is non-triangulable. It is seen that D is open relative to S. Since S is a continuous map of \mathfrak{C} , no point of D is an isolated point (unless S itself consists of only one point).

We now consider the components (maximal connected subsets) of D. Let C denote one such component. Since C is open relative to S, it follows that for every $Q \in C$, if $\varepsilon > 0$ is sufficiently small, the boundary of $B(Q,\varepsilon)$ relative to S, is of dimension zero [3]. Thus C is of dimension 1 at every one of its points. Since C consists of more than one point, is connected and contains no trees (i. e., no subset of C is a tree), it follows [4, 5] that \overline{C} , the closure of C, is either a Jordan curve or an arc. If \overline{C} is a Jordan curve, it can be decomposed as the union of two arcs. We may then consider \overline{D} as the union of a set of arcs. If A is such an arc, we may set up an order relation [4] on A which is isomorphic to the natural order relation on the closed linear interval [0, 1].

2. Surface Area

Theorem 1.

 \bar{C} can be imbedded in a triangulable surface.

Proof:

For each point Q of \overline{C} , there exists a ball $B(Q, \varepsilon_Q)$ such that $C \cap B(Q, \varepsilon_Q)$ consists of only one component. Let Q range over \overline{C} . This gives us a covering of \overline{C} . Since \overline{C} is connected, there exists [4] a simple chain of these balls which connect the two end-points of \overline{C} . There exists an arc k every point of which lies on the boundary of this finite set of balls.

We associate the arc k to the arc \bar{C} . It is seen that it is possible to select arcs k in such a manner that if \bar{C}_1 and \bar{C}_2 have a common end-point, then their corresponding arcs k_1 and k_2 also have a common end-point.

In the isomorphism of k and \overline{C} , let $M \in k$ and $M' \in \overline{C}$ be two corresponding points. Consider the line segment joining M and M'. Prolong this segment beyond M' so that M' becomes the mid-point of the extended segment. The union of these extended segments (as point sets) constitute a 2-dimensional strip which, clearly, is a triangulable surface.

Thus, it is clear that given any non-triangulable surface, S, there exists a triangulable surface S^* of which S is a subset. We now define the area of S to be the G. L. B. of the set of the areas of all the triangulable surfaces which contain S as a subset.

Each extension S^* of S as described above, involves an extension \mathfrak{E}^* of \mathfrak{E} and a corresponding extension F^* of the mapping F.

It is easy to see that, for a given S^* one may choose \mathfrak{E}^* to be an admissible set in the uv plane, i. e., a set which consists of the interior and the boundary of a simple closed polygon.

Theorem 2.

Let S be a non-triangulable surface. The area of S, as above defined, is identical with its Lebesgue area.

Proof:

Let A denote the area of S. There exists a sequence $(S_1^*, S_2^*, ...)$ of triangulable surfaces each containing S as a subset and such that

- 1) the corresponding sequence $(A_1^*, A_2^*, ...)$ of the surface areas converges to A,
- 2) the corresponding sequence $(\mathfrak{C}_1^*, \mathfrak{C}_2^*, \ldots)$ is monotonic decreasing, i. e., $\mathfrak{C}_1^* \supset \mathfrak{C}_2^*, \ldots$, and

3)
$$\mathfrak{E} = \bigcap_{i=1}^{\infty} \mathfrak{E}_{i}^{*}$$
.

It was shown in [2] that the area of each S_i^* is identical with its Lebesgue area. It now follows [2] from the convergence theorem for Lebesgue areas that the Lebesgue area of S is precisely A.

References

- [1] TORALBALLA, L. V.: A geometric theory of surface area. Part I: Non-parametric surfaces. Monatsh. Math. 74, 462—476 (1970).
- [2] TORALBALLA, L. V.: A geometric theory of surface area. Part II: Triangulable parametric surfaces. Monatsh. Math. 76, 66—77 (1972).
- [3] HUREWICZ, W., and H. WALLMAN: Dimension Theory. Princeton Univ. Press. 1948.
- [4] WILDER, R. L.: Topology of Manifolds. Amer. Math. Soc. Coll. Publ. 32 (1949).
- [5] MOORE, R. L.: Foundations of Point Set Theory. Amer. Math. Soc. Coll. Publ. 13 (1932).

Author's address: Prof. Dr. L. V. TOBALBALLA 205 Tryon Avenue Englewood, NJ, USA