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A Geometric Theory of Surface Area

Part I1I: Non-triangulable Parametric Surfaces
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Introduction

In Part I [1] we presented a geometric theory of the area of
a non-parametric surface. In Part II [2] we considered the area
of a triangulable parametric surface. To round out the basic theory
we now take up the case of the non-triangulable parametric sur-
faces.

A parametric surface is the locus in @ of simultaneous
equations z=f(u,v), y=g{u,v), 2=h(u,v), these functions being
defined and continuous on €, a subset of the uv plane consisting
of the interior and the boundary of a simple closed polygon. These
equations constitute a continuous transformation or mapping ¥
of €. Such a surface S is said to be triangulable at a given point
@e8, if for every ball B(Q,¢), there exists an admissible triangle
T inscribed in § N B(§,¢) (i. e., the vertices of T are in § N B(Q,¢)
and one angle of 7' lies between a prescribed angle ¢, 0 <<¢ <,
and s——g). 8 is said to be triangulable if it is triangulable at each
of its points.

1. Topology

Let S be non-triangulable at @e8. There exists a ball B(Q,¢)
such that in § N B(Q,s) no admissible triangle can be inscribed.
It follows that 8 is non-triangulable at each of the points in
SN B(Q,e). Let D denote the set of the points of S at which § is
non-triangulable. It is seen that D is open relative to 8. Since S is
a continuous map of &, no point of D is an isolated point (unless §
itself consists of only one point).
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We now consider the components (maximal connected subsets)
of D. Let C denote one such component. Since C is open relative
to 8, it foliows that for every QeC, if ¢ >0 is sufficiently small,
the boundary of B(@,é) relative to S, is of dimension zero [3].
Thus C is of dimension 1 at every one of its points. Since C consists
of more than one point, is connected and contains no trees (i. e.,
no subset of C is a tree), it follows [4, 5] that C, the closure of C,
is either a Jordan curve or an arc. If C is a Jordan curve, it can be
decomposed as the union of two arcs. We may then consider D
as the union of a set of arcs. If 4 is such an arc, we may set up
an order relation [4] on 4 which is isomorphic to the natural order
relation on the closed linear interval [0, 1].

2. Surface Area

Theorem 1.
C can be imbedded in o triangulable surface.

Proof:

For each point @ of C, there exists a ball B(Q,eq) such that
C N B(Q,zq) consists of only one component. Let ¢ range over C.
This gives us a covering of C. Since C is connected, there exists
[4] a simple chain of these balls which connect the two end-points
of C. There exists an arc k every point of which lies on the boundary
of this finite set of balls.

We associate the arc & to the arc. 0. It is seen that it is possible
to select arcs k in such a manner that if C; and O have a common
end-point, then their corresponding arcs ki and ks also have a
common end-point.

In the isomorphism of & and C, let Mek and M'eC be two
corresponding points. Consider the line segment joining M and M’
Prolong this segment beyond M’ so that M’ becomes the mid-point
of the extended segment. The union of these extended segments
(as point sets) constitute a 2-dimensional strip which, clearly, is
a triangulable surface.

Thus, it is clear that given any non-triangulable surface, S,
there exists a triangulable surface 8* of which § is a subset. We
now define the area of § to be the G. L. B. of the set of the areas
of all the triangulable surfaces which contain S as a subset.

Each extension S* of § as described above, involves an extension
G* of & and a corresponding extension F* of the mapping F.
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It is easy to see that, for a given S* one may choose ¢* to be an
admissible set in the wv plane, i. e., a set which consists of the in-
terior and the boundary of a simple closed polygon.

Theorem 2.

Let S be a non-triangulable surface. The area of S, as above
defined, is identical with its Lebesgue area.

Proof:
Let 4 denote the area of S. There exists a sequence (S1*,8z%,...)
of triangulable surfaces each containing 8 as a subset and such that

1) the corresponding sequence (AF, AY,...) of the surface
areas converges to 4,

2) the corresponding sequence (€}, €, ...) is monotonic de-
creasing, i. e., € DG}, ..., and

3) €= G
1

It was shown in [2] that the area of each 8;* is identical with
its Lebesgue area. It now follows [2] from the convergence theorem
for Lebesgue areas that the Lebesgue area of S is precisely 4.
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