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Introduction 

In Part  I [1] we presented a geometric theory of the area of 
a non-parametric surface. In Part  I I  [2] we considered the area 
of a triangulable parametric surface. To round out the basic theory 
we now take up the ease of the non-triangulable parametric sur- 
faces. 

A parametric surface is the locus in ff~ of simultaneous 
equations x=f(u,v), y=g(u,v), z=h(u,v), these functions being 
defined and continuous on if, a subset of the uv plane consisting 
of the interior and the boundary of a simple closed polygon. These 
equations constitute a continuous transformation or mapping F 
of ft. Such a surface S is said to be triangulable at a given point 
Q cS, if for every ball B(Q,e), there exists an admissible triangle 
T inscribed in S n B(Q,e) (i. e., the vertices of T are in S n B(Q,e) 
and one angle of T lies between a prescribed angle ~, 0 < (f < ~, 
and ~--~) .  S is said to be triangulable if it  is triangulable at each 
of its points. 

1. Topology 

Let S be non-triangulable at QeS. There exists a ball B(Q,e) 
such tha t  in S nB(Q,e) no admissible triangle can be inscribed. 
I t  follows that  S is non-triangulable at each of the points in 
S n B(Q,e). Let D denote the set of the points of S at which S is 
non-triangulable. I t  is seen that  D is open relative to S. Since S is 
a continuous m~p of if, no point of D is an isolated point (unless S 
itself consists of only one point). 
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We now consider the components (maximal connected subsets) 
of D. Let C denote one such component. Since C is open relative 
to S, it follows that  for every Q s C, if e > 0 is sufficiently small, 
the boundary of B(Q,e) relative to S, is of dimension zero [3]. 
Thus C is of dimension 1 at every one of its points. Since C consists 
of more than one point, is connected and contains no trees (i. e., 
no subset of C is a tree), it follows [4, 5] tha t  C, the closure of C, 
is either a Jordan curve or an arc. I f  0 is a Jordan curve, it  can be 
decomposed as the union of two arcs. We may then consider 
as the union of a set of arcs. I f  A is such an are, we may set up 
an order relation [4] on A which is isomorphic to the natural order 
relation on the dosed linear interval [0, 1]. 

2. Surface Area 

Theorem 1. 

@ can be imbedded in a triangulable surface. 

Proof: 
For each point Q of C, there exists a ball B(Q, eQ) such that  

C n B ( Q ,  eQ) consists of only one component. Let Q range over 0. 
This gives us a covering of C. Since C is connected, there exists 
[4] a simple chain of these balls which connect the two end-points 
of 0. There exists an arc ]c every point of which lies on the boundary 
of this finite set of balls. 

We associate the arc k to the arc C. I t  is seen that  it is possible 
to select arcs k in such a manner tha t  if Ci and C2 have a common 
end-point, then their corresponding arcs ki and k~ also have a 
common end-point. 

In the isomorphism of k and C, let Me/r and M ' e O  be two 
corresponding points. Consider the line segment joining M and M'. 
Prolong this segment beyond M' so that  M' becomes the mid-point 
of the extended segment. The union of these extended segments 
(as point sets) constitute a 2-dimensional strip which, clearly, is 
a triangulable surface. 

Thus, it is clear tha t  given any non-triangulable surface, S, 
there exists a triangulable surface S* of which S is a subset. We 
now define the area of S to be the G. L. B. of the set of the areas 
of all the triangulable surfaces which contain S as a subset. 

Each extension S* of S as described above, involves an extension 
@* of @ and a corresponding extension F* of the mapping F. 
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I t  is easy to see tha t ,  for a given S* one m a y  choose ~* to be an 
admissible set in the uv plane, i. e., a set which consists of the in- 
terior and the boundary  of  a simple closed polygon. 

Theorem 2. 

Let S be a non-triangulable surface. The area of S, as above 
defined, is identical with its Lebesgue area. 

Proof:  
Le t  A denote the  area of  S. There exists a sequence ($1", $2" . . . .  ) 

of tr iangulable surfaces each containing S as a subset and such tha t  

1) the corresponding sequence (A*,A.~ . . . .  ) of the surface 
areas converges to A, 

2) the corresponding sequence (~*, ~* . . . .  ) is monotonic de- 
creasing, i. e., ~* D ~* . . . . .  and 

1 
I t  was shown in [2] t ha t  the area of each S~* is identical wi th  

its Lebesgue area. I t  now follows [2] from the  convergence theorem 
for Lebesgue areas tha t  the Lebesgue area of S is precisely A. 
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